
Google Play Console: Insightful Development using
Android Vitals and Pre-Launch Reports

Julian Harty
Commercetest Limited

julianharty@gmail.com

Abstract—Through a case study, I present several related
software tools provided by the Google Play Console to Android
developers. To help developers monitor and diagnose how their
apps are performing in the real-world, Google Play Console
includes Android Vitals to track technical performance, Release
Management in particular automated pre-launch testing and
analysis, and User Feedback for ratings and reviews. They enable
developers to identify and address issues that affect active users
of their Android apps. The (in-)stability reports include pertinent
attributes such as the device model and Android version which
can help correlate and triangulate when issues adversely affect
customers. App developers can also use the findings to discover
flaws in their development and testing practices. Ratings and re-
views are already popular topics for researchers, perhaps Release
Management and Android Vitals deserve equivalent interest and
may offer several new rewarding research areas.

Index Terms—Android Vitals, Google Dev Console, Kiwix,
Metrics, Mobile Applications, Pre-Launch Report, Software
Quality.

I. INTRODUCTION

Android app developers predominantly use Google Play to
publish their apps to users and over 1,000,000 developers
currently use the Play Store in 2018 [1]. In recent years
Google has launched several, practical, free tools to help these
developers improve their Android apps.

For example, developers of the Busuu language app1 re-
ported how they used several of the tools and reports to find
and address performance problems. By doing so they also
improved their app rating from 4.1 to 4.5 stars [2].

A. Android Vitals

In July 2017, Google announced Android Vitals - “Android
Vitals is designed to help you understand and analyze bad
app behaviors, so you can improve your app’s performance
and reap the benefits of better performance” [3]. Since then
Android Vitals has evolved with changes and new features
being released on an ongoing basis [1].

B. Release Management

The Release Management tool provides a dashboard that
includes various metrics together with time series graphs that
compare: installs and uninstalls, crashes and Application Not
Responding (ANRs)2, and reviews and ratings for the current
production release(s) against previous releases. The dashboard
includes links to more detailed reports for each topic. These

1https://play.google.com/store/apps/details?id=com.busuu.android.enc
2https://developer.android.com/topic/performance/vitals/anr

Fig. 1. 30-day Crash rate for Kiwix.

graphs and reports provide daily updates on how the various
releases are performing and approximately how many devices
each release is installed on. A final tool bundled with Release
Management is the pre-launch report.

C. Pre-launch Reports

Google Play automatically generates pre-launch reports
shortly after the binary file (known as an ‘APK’) for an An-
droid app is uploaded. They are run for every non-production
app i.e. for internal test, closed (alpha), and open (beta) tracks
[4]. These reports were announced at Google IO in 2016 [5]
and continue to be revised and enhanced [6].

The test automation software is called Robo. Robo starts
and then interacts with the app; it records a video, screenshots
as well as details of crashes and other potential flaws. By
default, Robo explores and interacts with the app and seems to
behave similarly to Android Monkey, one of the stalwarts
of many research papers on test automation for Android .
Robo also offers developers additional facilities, including
deep links, Robo script, and demo loops3. Fig. 2
illustrates the test results for various releases of an app; in
this example there were issues detected for the version code
‘182520’. The issue includes a crash and 17 issues related to
accessibility.

The tests run on a range of devices with a variety of Android
releases and locales – for some developers this may be the first
time their apps are tested in a language other than English.

Up to five languages can be specified for testing.

3Details available at https://developer.android.com/distribute/best-practices/
launch/pre-launch-crash-reports

https://play.google.com/store/apps/details?id=com.busuu.android.enc
https://developer.android.com/topic/performance/vitals/anr
https://developer.android.com/distribute/best-practices/launch/pre-launch-crash-reports
https://developer.android.com/distribute/best-practices/launch/pre-launch-crash-reports


Fig. 2. Pre-launch report showing failures.

D. No app is an island

Some of the key strengths of these tools include com-
parisons, trends, and benchmarks that enable developers to
learn how their app is performing in the field. The reports
often include comparisons between the current and most recent
previous period (often 30 days) and trends can be calculated,
particularly when the timescales are set for longer periods.
Apps are automatically compared against both top rated apps
and apps in the same category to provide benchmarks; these
include crashes (as illustrated in “Fig. 3”), ANRs, and ratings.
“Fig. 1” shows Google provides a bad behavior threshold to
help developers know what adequate looks like.

Fig. 3. Benchmark: crash rate for Kiwix compared to the Books and Reference
Category.

E. Maturity and adoption

These tools are relatively new and, as yet, are used by a
minority of the developers. This seems to be the first paper
published on these tools.

Furthermore, they are of limited value for low-volume apps
as several reports are only available once there are data
volumes to enable the data to be anonymized sufficiently to
protect users’ privacy.

F. Data is available for download

Monthly reports are available to download4 either interac-
tively or using a command line tool gsutil5. The reports
include crashes and ANRs, ratings, reviews, installations, and
financial information.

4https://support.google.com/googleplay/android-developer/answer/6135870
5https://support.google.com/googleplay/android-developer/?p=stats export

II. EXEMPLARY PROJECT

The author was provided access to the Google Play Console
for a family of open-source6 projects called Kiwix. Kiwix
provides 18 active Android applications7 that enable various
Wikipedia and related contents to be used offline. There is a
general purpose app which includes a download manager, the
rest are packaged with specific content such as articles related
to Medicine, STEM, and Travel.

A. How were the various apps performing?

Android Vitals considers ’Stability’ in two aspects: crashes
detected by Android i.e. not handled by the app, and ANRs. It
provides ’Bad Behavior Threshold’s for both, these are 1.09%
for crashes and 0.47% for the ANR rate.

1) Bug Clusters: The Download Manager is unique to the
main Kiwix app; and over 47% of the crashes are related
to this feature. The next most common crashes are related
to: incorrect Android Lifecycle management ≥ 14%, and
processing contents of Wikimedia and other materials ≥ 8%.

As “Table. I” shows, the apps fail more often on newer
releases of Android. Inexorably user populations will gradually
migrate to newer versions of Android (at the time of writing
Android 8.0 and 8.1 are the most popular) so these figures
are particularly concerning and help developers to focus their
efforts on addressing the causes of the increased crash rates
on the newer releases of Android. Back in 2013 changes to
the Android APIs (intrinsic to Google releasing new versions
of Android) were identified as a key threat to the success of
Android apps [7].

TABLE I
CRASHES OF KIWIX BY ANDROID VERSION

Version Impacted
sessions

Crash-free
sessions

#Sessions Bottom
quartile

9 8.28% 91.72% 3k 1.70%
8.1.0 7.39% 92.61% 6k 1.29%
8.0.0 4.89% 95.11% 13k 1.19%
7.0 2.08% 97.92% 4k 0.75%
6.0.1 1.40% 98.60% 3k 0.75%

B. Surprising discoveries

The crash rates vary significantly for seemingly similar
apps. ‘Chemistry & Physics simulations’ has the highest crash
percentage at 4.08%, more than twice that of any of the other
seemingly similar packaged apps. The simulations use lots of
JavaScript to provide rich and highly-interactive web content8

and the higher crash rate may well be related to flaws in the
code that reads in and interprets this much richer content than
the relatively static material from Wikimedia sites, etc.

6https://github.com/kiwix/kiwix-android/
7https://play.google.com/store/apps/developer?id=Kiwix+Team
8Sourced from https://phet.colorado.edu/en/simulations/category/html

https://support.google.com/googleplay/android-developer/answer/6135870
https://support.google.com/googleplay/android-developer/?p=stats_export
https://github.com/kiwix/kiwix-android/
https://play.google.com/store/apps/developer?id=Kiwix+Team
https://phet.colorado.edu/en/simulations/category/html


C. Know your apps

Android Vitals rates Kiwix as being in the bottom 6% of
similar apps for ‘excessive network usage’; while none of
the other apps have any network usage reported. Why does
the Kiwix app differ? It is designed and intended to enable
users to download various content from Wikimedia and other
sources, including TED Talks. All these are downloaded over
the network connection, as is the latest catalog of the content
that is also hosted online. Therefore it is unsurprising that it
is an extensive user of the network compared to other apps in
the ‘Books and Reference’ category.

III. ADVANCING THE STATE OF PRACTICE

Crash reporting libraries have been available for years, as
have mobile analytics. Automated monkey testing has been
provided as a core test automation tool since the early days of
Android; and there are numerous other automated app crawler
tools available currently. Nonetheless, Google Play Console
offer the opportunity for development teams to receive relevant
feedback without having to explicitly use special libraries or
testing tools. Google also reduces ’friction’ as the data is
gathered from many millions of users who have opted-in to
providing crash reports, etc. automatically9. A key factor is
that Google Play has incredible breadth as it collects data
for the millions of apps in the Play Store and from all the
Android devices where users have opted-in to providing usage
and diagnostics information. Nothing else has the combination
of depth and breadth in the world of software app stores.

IV. FROM ANALYSIS TO ACTION

Although Google have made great strides in reducing the
friction for developers by collecting the data and making it
freely available to the app developers, the developers still need
to firstly notice and - as necessary - take corrective action
in order to actually improve the qualities of their apps and
increase the users’ perceptions, ratings and reviews.

For Android Vitals, here is a suggested checklist:
• Identify and group common clusters; deal with any ob-

fuscation by uploading mapping files10;
• Interpret the stacktrace to find where and when the

exception was raised;
• Match the crash to the version(s) of the relevant app:

this is key when an app has multiple releases active in
production;

• Review the source code to establish code paths that could
lead to the crash and experiment by testing the app on
one or more devices.

Developers can then decide what action to take both imme-
diately and longer-term. Their choices include:

• Exclude the flawed code: change the code paths so it does
not reach the vulnerable code;

9https://support.google.com/googleplay/android-developer/answer/
6083203?hl=en-GB

10https://support.google.com/googleplay/android-developer/answer/
6295281

• Hide it: catch the exception and hide the crash;
• Deal with the symptoms: especially if the cause is un-

known or outside the developer’s control e.g. it may be
related to a flaw on particular devices or responses from
a third-party API;

• Report the problem to the user: An error well-controlled
where the user is informed may improve the trust users
place in the app and thereby increase their satisfaction
with the app;

• Identify and address causes of the problem(s): sometimes
the most challenging to achieve immediately is to work
out the causes of the problem and write code that deals
with these causes appropriately and correctly.

Generally developers will need to create, upload and release
newer versions of their app in Google Play where they can then
monitor the effects using the tools and reports mentioned here.

V. RELATED WORK

As mentioned earlier, elements of the tools are already
available from various sources. Furthermore researchers have
published in various related areas. Gómez and coauthors -
perhaps coincidentally - envisaged an App Store 2.0 [8] that
offers similar capabilities to those Google were releasing
around the same period (2017).

Autonomous Automated Testing Tools: Android Monkey has
an established pedigree where it finds crashes in many Android
apps even though it applies simple concepts and has few
“smarts”. It has become a benchmark for many researchers
who use it as a comparison with whatever automated testing
they are assessing. In recent years many commercial entities
have launched autonomous automated testing tools, including:
Google Firebase Test Lab, Amazon’s AWS Device Farm,
Appachhi, Bitbar, Monkop, and test.ai.

Distributed testing of mobile apps: Vikomir and co-authors
evaluated the effectiveness of testing on sets of Android
devices and claimed an effectiveness of 90% with five devices,
where the most successful approach used different types
(versions) of Android operating systems [9].

Analysis of Reviews: There are well-established streams of
research that mine ratings and reviews from mobile app stores,
for instance [10], [11].

Analysis of Crashes: Various researchers have investigated
ways to automatically reproduce crashes. These include the
work of Gómez and coauthors [12] where a client library
is installed and activated explicitly when users consent; it
identifies patterns of crashes from crash logs gathered from
the field. Their approach is unlikely to be practical for general
Android users who are not likely to accept and enable third-
party software to monitor their use and also run tests remotely
on their devices.

Release Readiness: Nayebi, et al [13] introduce the concept
of marketability established using various release criteria,
including quality and feedback from users.

VI. LIMITATIONS, BUGS AND FLAWS IN THE TOOLS

”With Great Power Comes Great Responsibility.” These
tools are intended to help us improve our apps, therefore they

https://support.google.com/googleplay/android-developer/answer/6083203?hl=en-GB
https://support.google.com/googleplay/android-developer/answer/6083203?hl=en-GB
https://support.google.com/googleplay/android-developer/answer/6295281
https://support.google.com/googleplay/android-developer/answer/6295281


are also subject to scrutiny. I found various flaws in the tools;
these have been reported directly to Google, here is a summary
of most of them:

Counts: The Dashboard shows 11.99K Crashes & ANRs,
yet the detailed reports only had 11653. The dashboard in-
cludes an extra day than the detailed report.

Crash rates: the value is pre-filtered to the “Produc-
tion” release with the highest crash rate (5.89%) on the
AppHealthOverviewPlace page, yet clicking-through to
see the details shows an overall crash rate of 4.48% (across
all releases) for the main Kiwix app. The 5.89% rate is,
however, for the second-most popular app version (182160)
with 5K sessions, and ignores the most popular app version
(1182160) with 23K sessions with a 4.58% crash rate.

More crash clusters are reported than really ex-
ist, for example Android Vitals shows 12 clusters for
(LibraryFragment.java:156) rather than one.

Session counts differ depending on the grouping used,
e.g. 28K sessions by app version and 27K sessions by An-
droid version.

Figure 4 shows the heading for Top countries is consistently
for the second ranked country not the first. Only the first 10
apps are listed in various dropdown menus, the others need to
be searched for explicitly e.g. by Java package name.

Fig. 4. Bug discovered in the Acquisition Report of Google Play.

VII. CONCLUSION AND FUTURE WORK

The tools I have presented enable developers to monitor key
aspects of how their Android apps are performing on end-
user devices. They complement and integrate with the User
Feedback tools also provided to the developers.

Developers do not need to change their applications to
benefit from these tools (although they are encouraged by
Google to add crash reporting and mobile analytics). The data
and reports enable them to identify actual and potential flaws
quickly so they can mitigate and address them. The integrated
pre-launch testing and analysis catches some problems before
the app is released; while the stability and performance reports
provide de-facto feedback on their work including design,
development and testing of various releases of their apps.
Because of the volume thresholds, Google imposes the reports
are currently more relevant to apps with 10,000+ active users.

Researchers are encouraged to use, experiment and evaluate
the tools provided by Google Play Console. For example: on
the efficacy of the pre-launch testing and reports; to compare

and contrast the efficacy with other techniques such as textual
analysis of reviews; to determine the sweetspot for actionable
data while protecting privacy of users; i.e. the conundrum of
how much data to collect and provide in the reports; and
on ways to reproduce crashes on-demand for easier fault
diagnosis using the crash clusters, based on [14] for instance.

A. Acknowledgements
Thank you Arosha Bandara, Yijun Yu (Open University),

and Fergus Hurley (Product Manager, Google), for their help.

REFERENCES

[1] P. Correa, Android Developers Blog: Wrapping up for 2018
with Google Play and Android, 18-Dec-2018. [Online].
Available: https://android-developers.googleblog.com/2018/12/
wrapping-up-for-2018-with-google-play.html. [Accessed: 12-Feb-
2019].

[2] Android Developers, Android Developer Story: Busuus performance
improvements yield jump in user rating. 2017 https://www.youtube.com/
watch?v=KS3EdZ6TETY.

[3] F. Hurley, Android Developers Blog: Android Vitals: Increase en-
gagement and installs through improved app performance, 10-Jul-
2017. [Online]. Available: https://android-developers.googleblog.com/
2017/07/android-vitals-increase-engagement-and.html. [Accessed: 12-
Feb-2019].

[4] Android Developers, Ensure You’re Launching a High-Quality App or
Game with the Pre-Launch Report. 2019 [Online]. https://www.youtube.
com/watch?v=jSR 1sPvckU [Accessed 11 Mar. 2019].

[5] P. Kochikar, Android Developers Blog: What’s new in Google
Play at I/O 2016: better betas, the pre-launch report, bench-
marks, a new Play Console app, and more, 18-May-2016. [On-
line]. Available: https://android-developers.googleblog.com/2016/05/
whats-new-in-google-play-at-io-2016.html. [Accessed: 12-Feb-2019].

[6] Android Developers, Use pre-launch and crash reports to improve
your app. 2019 [Online]. https://developer.android.com/distribute/
best-practices/launch/pre-launch-crash-reports [Accessed 11 Mar.
2019].

[7] M. Linares-Vsquez, G. Bavota, C. Bernal-Crdenas, M. Di Penta, R.
Oliveto, and D. Poshyvanyk, API change and fault proneness: a threat
to the success of Android apps, presented at the Proceedings of the
2013 9th joint meeting on foundations of software engineering, 2013,
pp. 477487.

[8] M. Gomez, B. Adams, W. Maalej, M. Monperrus, and R. Rouvoy, App
Store 2.0: From Crowdsourced Information to Actionable Feedback in
Mobile Ecosystems, IEEE Software, vol. 34, no. 2, pp. 8189, Mar. 2017.

[9] S. Vilkomir, K. Marszalkowski, C. Perry, and S. Mahendrakar, Effec-
tiveness of Multi-device Testing Mobile Applications, in 2015 2nd ACM
International Conference on Mobile Software Engineering and Systems,
Florence, Italy, 2015, pp. 4447.

[10] A. Al-Subaihin et al., App store mining and analysis, in Proceedings of
the 3rd International Workshop on Software Development Lifecycle for
Mobile - DeMobile 2015, Bergamo, Italy, 2015, pp. 12.

[11] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, Why people
hate your app: making sense of user feedback in a mobile app store,
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD 13, Chicago, Illinois,
USA, 2013, p. 1276.

[12] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier, Reproducing
context-sensitive crashes of mobile apps using crowdsourced monitoring,
in Proceedings of the International Workshop on Mobile Software
Engineering and Systems - MOBILESoft 16, Austin, Texas, 2016, pp.
8899.

[13] M. Nayebi, H. Farahi, and G. Ruhe, Which Version Should Be Released
to App Store?, in 2017 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), Toronto, ON,
2017, pp. 324333.

[14] White, M., Linares-Vsquez, M., Johnson, P., Bernal-Crdenas, C. and
Poshyvanyk, D., 2015, May. Generating reproducible and replayable bug
reports from android application crashes. In Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension (pp.
48-59). IEEE Press.

https://android-developers.googleblog.com/2018/12/wrapping-up-for-2018-with-google-play.html
https://android-developers.googleblog.com/2018/12/wrapping-up-for-2018-with-google-play.html
https://www.youtube.com/watch?v=KS3EdZ6TETY
https://www.youtube.com/watch?v=KS3EdZ6TETY
https://android-developers.googleblog.com/2017/07/android-vitals-increase-engagement-and.html
https://android-developers.googleblog.com/2017/07/android-vitals-increase-engagement-and.html
https://www.youtube.com/watch?v=jSR_1sPvckU
https://www.youtube.com/watch?v=jSR_1sPvckU
https://android-developers.googleblog.com/2016/05/whats-new-in-google-play-at-io-2016.html
https://android-developers.googleblog.com/2016/05/whats-new-in-google-play-at-io-2016.html
https://developer.android.com/distribute/best-practices/launch/pre-launch-crash-reports
https://developer.android.com/distribute/best-practices/launch/pre-launch-crash-reports

	Introduction
	Android Vitals
	Release Management
	Pre-launch Reports
	No app is an island
	Maturity and adoption
	Data is available for download

	Exemplary Project
	How were the various apps performing?
	Bug Clusters

	Surprising discoveries
	Know your apps

	Advancing the state of practice
	From analysis to action
	Related Work
	Limitations, bugs and flaws in the tools
	Conclusion and Future Work
	Acknowledgements

	References

